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shear modulus
GA, shear stiffness
& depth of beam
IVW internal virtual work
m external moment
M  bending moment
N unit normal vector
N axial force
popn  external load in {'- and {>-directions
shear force
position vector to axis
position vector of any point in plane of beam
radius
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1. INTRODUCTION

Although large deflection of arches has been the subject of numerous investigations (see, ¢.g.
Refs. [1-7]) only a few of them admit sbear deformation. The first attempt to derive the static
nonlinear equations for a beam with shear deformation was made in Ref. [5]; more exact
analyses for beams and arches are reported in Ref.[6). A nonlinear dynamic theory of thin
straight beams with shear deformation and rotary inertia is derived in Ref. [7]. None of these
cover an arbitrary curved beam,—and furthermore they are more concerned with deviations
and with qualitative aspects, than with the solution procedure and the quantitative effect of
shear deformation.

In the present work, which extends the analysis in Ref. {8] to the case of iarge deflection and
small rotation, a general dynamic theory and a solution procedure are developed for an
arbitrary curved beam made of linear elastic material with geometrical initial imperfections.
Shear deformation, rotary inertia and viscous damping are taken into account and the quan-
titative influence of the shear stiffness is examined. Shear deformation and rotary inertia, with
their effect on nonlinear characteristics, come into play in such problems as thick and layered
structures and higher-mode vibration.

The nonlinear equations of motion for a plane curved beam of arbitrary shape, written in
tensor form, are derived from the general three-dimensional theory. The kinematic variables,
the parameters of the geometrical initial imperfection and the equations of motion are referred
to the initial configuration (generaily being called *‘Lagrangian formulation™). By recourse to the
shear-angle parameter, the Kirchhoff hypothesis is replaced with a Bernoulli-type one (that
normals to the pre-deformation reference surface do not necessarily retain their normality after
deformation). The kinematic unknowns are chosen so as to yield a second-order nonlinear
differential equation. Finally, the proposed numerical solution procedure consists in reduction
of the nonlinear differential equations to a linear sequence by means of a modification of
Newton’s method[9], conversion of the differential equations to finite-difference equations with
interlaced nets{8, 10} and application of Houbolt’s method[11] in the time domain.

The theory and solution procedure are illustrated on the examples of a straight beam, a
shallow arch and a deep arch. In all three, subjected to a step load, the dynamic buckling
behavior was studied and the influence of shear deformation was examined.

2. ANALYTICAL FORMULATION
The governing differential equations and the appropriate boundary conditions-are derived
for an arbitrary curved beam under dynamic loading. The equations include the effect of shear
deformation and rotary inertia.
Some parts of the procedure are as in Ref. (8], but are recapitulated here for the sake of
completeness. All kinematic and load variables are functions of the time parameter (¢), but the
index ¢ is omitted for convenience.

Geometry

In a plane beam, all material properties as well as the external loading are symmetric with
respect to a plane containing the axis of the beam. Let x, y (Fig. 1) be the plane of symmetry,
and let the pre-deformation axis be described by the position vector r({*) ({' denoting the axial
length). The following geometrical relations hold at every point of the axis:

T==; —~=-xN; —=xT (1

where T is the unit tangent vector. N is the unit normal vector and y is the beam curvature.
The position vector of any point in the plane can be given by:

R(', ) =r{")+ *N(Y) )

where ¢ denotes length along the normal. The coordinates {', {* are seen to be “natural” for
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Fig. 1. Coordinates, displacements, external and internal forces.

analysis of a curved beam. The base vectors of the system are

e=(1+0T
e;=N. &)}

The metric tensor defined as G; = e;¢; has the following equalities for its components:

Gu=(1+% G"=1/Gy
G=Gn=0, Gn=G2=1. @

The Christoffel symbols of the first and second kind are:
3Gy, 90,
Sy, Taf
1= 12 [+ -
T2 = G™aB, p). (5)

Substitution of eqn (4) in (5) yields:

L 1=0+20x'e Th=x0+&x)
(1,2)==x(1+{%) Th=-x(1+{)
2, 1)=x(1+&) Th=x1+)
RLN=x(1+L%)  Th=x01+x). ©
Kinematics
Thebasmassumpnonsofthebeamtheoryusedherearcthatphnesec&onsnomnltothe
beam axis before deformation retain their planeness but not necessarily their normality after

deformation, and that normal strain is neglected. The deformation can be described in terms of
a pair of vector functions with {' as the only variable:

v, I =vildh) + (Y Y]
and the post-deformation position vector is given by
R(, ) = () + () + PN + vl EY). ®

The displacement vectors can be expressed in terms of their components in the initial
configurations as follows:
V]({l) = yT+ wN

v =¢T. )
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where u and w are the displacements of the natural surface in the ¢’- and {*-directions,
respectively; ¢ is its angular rotation (all three being scalar functions of {?).
Substitution of eqn (9) in (7) yields:

v(Z', ) =(u+*$)T+ wN. (10)
The projections of the displacement on the base vectors read:
Uy = Ve,
=+ 0x0u+¢); u'=(u+ 21+ x)
L=w, ul=w, 1n
The strain tensor is given by:
€p = 12Gop — Gop) = 11 2ttyp + tg o + Gt - 4,p). (12)
In the case of a geometrical initial imperfection, we visualize initial displacements &, w (in the

tangential and normal directions, respectively) and initial rotation &, in the unloaded (stress-
free) beam and redefine the strain tensor:

€ap = Eag(U + 8, W+ W, ¢ + §) — €uglil, W, §) (13)
and its components are obtained by covariant differentiation, bearing in mind eqns (6), (11). For
moderately small rotation, we set ¢ = 0 and with the nonlinear terms of ¢ and ¢’ neglected, the

strain components are:

€ =u'+xw+ Y2 + 2w+ 12u + 12w + xu'w - xw'u
+U'T + WP+ YU+ )R xu' W xE W — xw' i — xw'u
+{'+ xu' + W)+ (EVxd'

€n=1/2¢ +w'— xu)

=0 (14)

(Note that in the theory which disregards shear deformation, ¢ is no longer independent of u
and w.)

Equations of motion
The equations of motion are derived by the principle of virtual displacements, which
postulates equality of the internal and external virtual work:

IVW=EVW. (15)

The internal virtual work is given by:
VW= L&"as,-,- av (16)

where & and & are the stress- and strain tensors referred to the deformed system and V is the
post-deformation value. Resorting to the Kirchhoff stress tensor in the underformed system:

Si = d—V: &= \/ (—g—)a’“ 17

(G and G being, respectively, the pre- and post-deformation determinant of the metric tensor),
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the internal virtual work can likewise be expressed (see Ref. [12)) as:

VW = Ivs"&,, v (18)

and assuming that the stress-strain relation is
Si=CMg, (19

where C™ is the tensor of elastic properties, substitution of egn (19) in (18) yields:
VW = jv C¥ ¢s0¢, dV. 20)
The external virtual work, incorporating the influence of inertial forces, is
EVW = L (Padu+pubw+ ms)dg'~ [ piovaV 4 Ntou*+ Qoowt + MYss* (21

where p, and py are the loads in ¢'- and £-directions respectively, m is the external moment
(see Fig. 1), p is the mass density, N*, Q*, M*are the external forces at the boundaries and u*,
w*, ¢* are the corresponding displacements.

Substitution of eqn (10) in (21) yields

EVW= L (Padu-+ pudw + m3g) dg' - jvp«a+ £EXbu+ £86) + wow}dV

+ N*5u* + Q*ow* + M*5¢*. (22)

(Note that the only type of load considered here is one which preserves its magnitude and
orientation under deformation, and is specified accordingly as force per unit underformed
length.) '

Substituting eqns (14) in (20), integrating the latter by parts and referring to eqn (15), we
obtain the equations of motion as a set of second-order nonlinear differential equations in u, w
and ¢, which read in implicit form as follows:

M1+ u'+ xw+ i’ + )W)} = o M" yxu - w' + yii — W)+ My + p, = ofii + 1§
oM (W' = xu+ W' = xit) + M"Y — M" Y1 + yw + i’ + o + @]+ M )2 4 py = LpW
[iM" .M XY~ oM™+ m = i +,1¢ @)

with the following boundary conditions:

u=u*oroM"(1+u'+yw+ '+ yw)+ ,M"y = N*
w=w*or M (W — yu+ W - xii)+ M7= Q*

¢=¢‘01'|M"+2M"=M* (24)
where
M= L SUEY dA
G @s)

«M! are the generalized forces (for example, oM"! is the axial force, M"" is the bending moment
and oM is the shear force).



1042 1. SHEINMAN
Define

e = | cmiers ag )

where b is the width of the beam.
The reference susface is best chosen so that

CM=(
} forn=1,3,5... v2))
Ad=0

Substituting eqn (19) in (25) and using eqns (14) and (27), we obtain the generalized forces as
function of the displacements:

GMII = Co""e+ C2”“X¢,+ COHIZ,Y

|M" = Cz""K
2A{ll = C2“”6+ C4”“X¢'+ Cz“lz‘y
oMu: Col2"€+ C2IZIIX¢u+ Colzxz.y (28)

where

e=u'+xw+ x2u + 2w+ 112u + 12w + yu'w — yw'u
U@+ wW' + Ui+ )P ww + xu' W + xia'w ~ xw'lii - xw'u
K=¢'+u'+ x*'w
y=¢+w-—xu (29)
(which are generally called extensional, bending and shear strain respectively).

3. SOLUTION PROCEDURE

A modification of Newton's method (Ref. [9]), applicable to differential equations, is
employed for reducing the nonlinear field equations eqns (23) and the appropriate boundary
conditions eqns (24) to a sequence of linear systems. In this method, the iteration equations
are derived by assuming that the solution is achieved by a small correction to an approximate
solution (initially taken as the linear solution). These small corrections are obtained through
solution of the linearized differential equations.

On substitution of eqns (27)~(29) in (23) and (24) and application of the modified Newton
method, the linearized second-order differential equations can be written in matrix form as
follows:

Field equations
[F}z"}+ Bz} + [ F)z} = {g} + [R){Z]. (30
Boundary equations
[Bi{{z'}+[Bo){z} = {8}
where {z}T ={u, w, ¢} is the unknown vector, [R] is the mass matrix (order 3 x 3), [F;] and [B;]
are coefficient matrices (order 3 X 3) dependent on the geometric and elastic parameters of the
beam and on the deformed configuration. {g;} and {g,} are vectors (of order 3) containing the

external applied load and terms introduced by the procedure of Newton’s method.
These differential equations are recast in the form of finite-difference equations. In view of



Dynamic large-displacement analysis of curved beams 1043

the aspects of convergence and accuracy under inclusion of shear deformation, a special
finite-difference scheme was chosen, comprising two interiaced distinct nets, one for w and the
other for u and ¢. The first and last equations of eqns (23) are written between mesh points and
the second at the points, this yielding a high degree of accuracy even with relatively sparse nets
(see Refs. [8, 10]). Differentiation at the boundaries is-‘ellected with the aid of fictitious points
on either exterior side of the curved beam.

After converting the differential equations to difference equations in the axial direction and
adding a viscous damping matrix, the final equations can be written as:

[A){z}+[CHE + [RY)Z} = {p} @

where {Z}7 = {2, 2; ... Znp, Znp+1} is the entire unknown vector (Np is the number of mesh
points). A, C and R are the overall matrices of stiffness, damping and mass, respectively (all are
of order 3(Np +2) X 3(Np +2) and are band matrices).

The exact form of the damping matrix is unknown for most structures, and there is little
experimental basis for selecting damping constants. Accordingly, a form of viscous damping
proportional to the mass and stiffness matrices, which suffices for most structures, was chosen
(see Ref. [13]),

[C1=a[R]+B(A] (32)

a and B are constants, determined from two given damping ratios corresponding to two
unequal angular frequencies of vibration:

a+Bol =2wé (33

where ; are the frequencies and £ the given damping ratios.

The first and second time derivatives of Z in eqn (31) are approximated by Houbolt's
third-order backwards difference expression (see Refs. [8, 11, 13]). The solution for each time
step (which later serves as initial solution for the next one) is obtained by an iterative
procedure, in which for each iteration the set of equations is solved by the generalization of
Potter’s method (reported in Ref. [14]), the matrix A and vector 5 of eqn (31) being changed
accordingly until the solution converges. A time history of the beam response is obtained by
using equal increments, either until a prescribed maximum number of time steps has been
reached, or until the solution fails to converge after a specified number of iterations. The time
interval is usually small, so only a few iterations are required. However, when the curved beam

becomes dynamically unstable, the solution may not converge even with a large number of
iterations.

4. NUMERICAL RESULTS

A general computer program (DLDCBM) was written for the procedure outlined above,
valid for any curved beam under arbitrary dynamic-loading and boundary conditions, as well as
for any geometrical initial imperfection. Three examples (worked out on a high-speed IBM
370/168 digital computer) were used for illustrating the above methodology, with the common
aim of comparing dynamic and static buckling under step loading at two levels of shear
stiffness: (a) a straight beam, (b) a shallow circular arch and (c) a deep circular arch. The static
solutions of these examples were obtained by the same program and the results (for a high level
of shear stiffness, to which they are also referred in literature) are in very good agreement with
Refs. [1, 4] for the shallow arch and with Refs. [2, 3] for the deep arch.

(a) Straight beam (sine-wave imperfection)

The parameters and load-frequency curves for this example are given in Fig. 2, as the axial
load increases the frequency decreases to a minimum and subsequently increases again. In Ref.
(15, the dynamic buckling load was defined as the highest load level for which a bounded
response exists, but since the straight beam is stable even beyond the buckling load, a new
definition is called for, namely, the load level for which the frequency is minimum. In the
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Fig. 2. Load-frequency curves for straight beam under axial step load.

present example the dynamic and static buckling load coincide, as the straight beam is not
sensitive to imperfections.

As could be expected, the frequencies and buckllng load for the lower level of shear
stiffness are lower than for the higher level (see Fig. 2), and while the frequency increases with
the imperfection (the beam becoming stiffer because of arching), the buckling load remains the
same. The dynamic magnification factor, plotted against the load parameter in Fig. 3, is seen to
decrease in the neighborhood of the buckling load. A uniform finite-difference net was chosen
with 31 points and the time interval was taken as 1/80 of the period of the first natural mode.

(b) Shallow circular arch

The parameters (drawn from Ref. [4]) and load-frequency curves are given in Fig. 4. Here
again, as in the preceding example, the frequency decreases to a minimum and then increases.
In Fig. 5 the maximum response is plotted for the cases of no damping and critical damping,

4 Qgyn —_— 8e/he0l
——— — a—— 8./70'0.3

u 1
.8t
L8
6=807x10% ng/cm? 6=807+10% xg/cm?
14}
L2 b
Pett
Lo A A A . 'y '.EI
o 02s 080 ors 100 128

Fig. 3. Dynamic magnification factor for straight beam under axial step load.
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Fig. 4. Load-frequency curves for shallow circular arch under concentrated step load.

= STATIC SOLUTION
s P(kg) DYNAMIC SOLUTION (without damping)
240 } i DYNAMIC SOLUTION (with critical damping)

a as 12 8 24 30 LY 4.2 49

Fig. 5. Maximum static and dynamic apex displacement for shellow circular arch under concentrated step
load.

compared with the static solution. In the critical damping case it is the same as in the static
solution until a limit point (the minimum point in Fig. 4). When the snap-through occurs the
displacement jumps to the other side and stabilizes. Figures 6 and 7 show the time history of
the apex displacement at several load levels, plotted for the high and low level of shear
stiffness, respectively; since these figures refer to an undamped system, they are compatible
with Fig. 4. Houbolt's method contains some built-in damping which depends on the load level
and for levels above the limit point a smaller time interval is necessary for an accurate solution.

the solution is plotted in the above figures for some time intervals in order to
illustrate this point. Figure 8, which presents the corresponding time history at critical damping,
shows a sharp jump of the response for a small change in load near the limit point (cf. py = 15.2
and 16 for GA, = 2.34x 10°, p,= 5.0 and 6.0 for GA, = 2.34 X 10* kg). The jump point is also a
characterization of the dynamic buckling load.
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Fig. 7. Time history of apex displacement for shallow arch with GA, = 234kg.

The dynamic solution converged, with respect to the number of nodal points, by 81 points
for the higher stiffness level and by 41 for the lower one. The time interval was taken as 1/100
of the period of the first natural mode.

(c) Deep circular arch

The parameters and load-frequency curves are given in Fig. 9; unlike the preceding example,
the frequency decreases until there is no bounded response, and the solution failed to converge
at the terminal point of these curves (the limit load level). Figure 10 shows the maximum
response of the apex displacement for the two stiffness levels and Fig. 11—the time history at
some load levels, for the lower stiffness level,

As the anlaysis was confined to the symmetric mode, only one half of the arch was run,
subject to the appropriate symmetry condition. The solution for the semicircular arch con-
verged, with respect to the number of nodal points, by 81 points. The time interval was again
taken as 1/100 of the period of the first natural mode. ‘
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Fig. 9. Load-frequency curves for deep circular arch under concentrated step load.

5. CONCLUSIONS

A non-linear theory, based on large deflection and small rotation and admitting shear
deformation and rotary inertia, and a solution procedure, are presented for an arbitrary plane
curved beam subjected to arbitrary dynamic loading. The non-linear equations, with the
displacements and total rotation as unknowns, are reduced to linear sequences (by a
modification of Newton's method), converted to difference equations, and solved by Houbolt's
method. The theory (limited to linear elastic material) and the solution procedure are suitable
for a wide range of problems, such as layered curved beams with geometric imperfections. The

dynamic criteria for buckling, and the influence of shear stiffness, are checked by numerical
means.
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Fig. 11. Time history of apex displacement for deep circular arch with GA, = 1.16X 10°kg.
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