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lAr ow:raIJ stiIIess matrix
b widIh of beam

(t] ownU dampiIa matrix
CI/M ....of elastic c:oeIic:ients

Ii bae ¥edor
E modlI1us of eluticity

EVW uIenIII virtual wart
G.- 1DIbic!-«

G cletcnnlnent of G..
G shear modulus

GA, shear ltilness
" depth of beam

IVW intcrnaJ virtual wart
m atcmaJ moment
M bendiRa moment
N unit IIOI'DIII vector
N axial force

Pro PH exteraalloacJ in ,1._ ,2-direetions
Q shear force
r PQIitioa vector to Dis
R position vector of any point in plane of beam
R radius

(R) mass IllaCrix
Sf KircIlhof sims tensor

t time
T unit lanFIt vector

lie c:ompoIIeIlt of displacement
" ....displacement (lIftbown)
il ~nt,eometric: imperfection
y displac:ement vector
V YOIuIae
II lIlIrIlIaI displlCeDleDl (......)
If ....~...,ection

{z} lIIIbDwn vector
• nlCIdoa (lIIIbown)
p mass density
X anature

ail sIJess tensor
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1. INTRODUCTION

Although large deftection of arches bas been the subject of numerous investigations (see, e.g.
Refs. [1-7]) only a few of tbem ....... deformation. The first attempt to derive the static
nonlinear equations for a beam willi .. deformation was made in Ref. [5]; more exact
analyses for beams aad arches are reparted in Ref.(6). A nonlinear dynamic theory of tbin
straight beams with shear deformation and rotary inertia is derived in Ref. [7]. None of these
cover an arbitrary curved beam,--and furthermore they are more concerned with deviations
and with qualitative aspects, than with the solution procedure and the quantitative effect of
shear deformation.

In the present work, which extends the analysis in Ref. (8) to the case of large de8ection and
small rotation, a general dynamic theory and a solution procedure are developed for an
arbitrary curved beam made of linear elastic material with geometrical initial imperfections.
Shear deformation, rotary inertia and viscous dampiDl are taken into account aad the quan
titative inftuence of the shear stilness is examined. Shear deformation and rotary inertia, with
their elect on nonlinear characteristics, come into play in such problems as tJUck and layered
structures and biaher-mode vibration.

The nonHnear equations of motion for a plane curved beam of arbitrary shape, written in
tensor form, are derived from the general three-dimensional theory. The kinematic variables,
the parameters of the ga>metrical initial imperfection and the equations of motion are referred
to the initial configuration (generally beiDl called "Lagranaian formulation"). By recourse to the
shear-angle parameter, the Kirchhoff hypothesis is replaced with a Bernoulli-type one (that
normals to the pre-deformation reference surface do not necessarily retain their normality after
deformation). The kinematic unknowns are chosen so as to yield a second-order nonlinear
differential equation. Finally, the proposed numerical solution procedure consists in reduction
of the nonlinear differential equations to a linear sequence by means of a ~tion of
Newton's methodl9], conversion of the differential equations to finite-difference equations with
interlaced netsl8, 10) and application of Houb9lt's method[1l] in the time domain.

The theory and solution procedure are illustrated on the examples of a straight beam, a
shallow arch and a deep arch. In all three, subjected to a step load, the dynamic buckling
behavior was studied and the influence of shear deformation was examined.

2. ANALYTICAL FORMULATION

The governing differential equations and the appropriate boundary conditions are derived
for an arbitrary curved beam under dynamic loading. The equations include the effect of shear
deformation and rotary inertia.

Some parts of the procedure are as in Ref. [8], but are recapitulated here for the sake of
completeness. All kinematic and load variables are functions of the time parameter (t), but the
index t is omitted for convenience.

Geometry
In a plane beam, all material properties as well as the external loading are symmetric with

respect to a plane containiDI the axis of the beam. Let x, y (Fig. 1) be the plane of symmetry,
and let the pre-deformation axis be described by the position vector r({I) UI denoting the axial
length). The followiDl geometrical relations hold at every point of the axis:

dr dT dN
T=-' -=-XN' -=XT

d,,' del ' del

where T is the unit taIlIent vector. Nis the unit normal vector and X is the beam curvature.
The position vector of any point in the plane can be given by:

(I)

(2)

where ,2 denotes length along the normal. The coordinates ,', ,2 are seen to be "natural" for
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y

rfl. I. Coordinates. displacements, external and internal forces.

analysis of a curved beam. The base vectors of the system are

el = (1 + (zx)T

ez=N.

The metric tensor defined as Gil =ttel has the following equalities for its components:

Gll =(1 + (zx'f; Gll =lIGll

G1Z =GZ1 =0; G22 "" G22 =1.

The Christoftel symbols of the first and second kind are:

_ / [aGn aGtr _ aG,,]
[a, 13, 1] - I 2 a(fJ + ar arr

r~ = G1P[a{j,p].

Substitution of eqn (4) in (5) yields:

[11, I] =(1 +(2X)X'(Z r11 =X'(z/(I +fZx)

[11,2] =-x(1 +(zx) I'll = -x/(I +(zx)

[12, I] =x(1 +f2X) rl2 =x/(l +(2X)

[21,1] =x(1 +(2X) fl1=xI(1 +(2X).

(3)

(4)

(5)

(6)

Kiumatics
The basic assumptions of the beam theory used here are that plane sections normal to the

beam axis before deformation retain their planeDess but not necessarily their normality after
detonation. and that normal strain is neaJected. The deformation can be descn'bed in terms of
a pair of vector functions with (' as the only variable:

(7)

and the post-deformation position vector is given by

(8)

The displacement vectors can be expressed in terms of their components in the initial
codprations as foUows:

'fI(
1
) "" .,T+ wN

vz<r)=.T. (9)
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where II and w are the displacements of the natural surface in the (1_ and (2-directions,
respectively; r/J is its angular rotation (aU three being scalar functions of (I).

Substitution of eqn (9) in (7) yields:

(10)

The projections of the displacement on the base vectors read:

Ila =vea

(11)

The strain tensor is given by:

(12)

In the case of a geometrical initial imperfection, we visualize initial displacements il, w(in the
taqential and normal directions, respectively) and initial rotation J, in the UDloaded (stress
free) beam and redefine the strain tensor:

E,.(J =EaIJ(U + ii, w+ W, r/J +~) - Eail(ii, W, ~) (13)

and its components are obtained by covariant differentiation, bearing in mind eqns (6), (1). For
moderately small rotation, we set ~ =0 and with the nonlinear terms of r/J and r/J' neglected, the
strain components are:

Ell =u'+ xw+ X2/2u2+ X2/2w2+ 1/2u,2+ 1/2w,2+ xu'w- xw'u

+u'ii' +w'w' +rUii +X2wlii +xu' Iii +xii'w - xw'ii - Xlii'u

+(2(r/J' +xu' +rw) +(e)2xr/J'

E12 = l/2(r/J +w' - xu)

En =O. (14)

(Note that in the theory which disregards shear deformation, r/J is no longer independent of u
and w.)

Equations 0/ motion
The equations of motion are derived by the principle of virtual displacements, which

postulates equality of the internal and external virtual work:

The internaJ virtual work is given by:

IVW=EVW.

IVW = ( UU8iij dVlv

(15)

(16)

where (jiJ and iq are the stress- and strain tensors referred to the deformed system and V is the
post-deformation value. Resorting to the Kirchhof stress tensor in the underformed system:

(17)

(0 and Gbeing, respectively, the pre- and post-deformation determinant of the metric tensor),



Dynamic Iarge-disp!acemenl analysis of curved beams

the interna1 virtual work can likewise be expressed (see Ref. (12» as:

IVW = IvSIl6Eu dV

and assuming that the stress-strain relation is

where C"" is the tensor of elastic properties, substitution of eqn (19) in (18) yields:

IVW =Iv C/IldEtJ&iJ dV.

The external virtual work, incorporating the inftuence of inertial forces, is

1041

(18)

(19)

(20)

EVW= ( (P,8u+pH8w+m&Mde' - ( piSvdV+N*&M*+Q*Sw*+M*&/I* (21)
~ Jv

where P. and PH are the loads in e'· and f2-directions respectively, m is the extemal moment
(see rag. I), p is the mass density, N*, Q*, M*are the external forces at the boundaries and u*,
w*, .* are the corresponding displacements.

Substitution of eqn (10) in (21) yields

+N*Su*+ Q*Sw*+ M*&/I*. (22)

(Note that the only type of load considered here is one which preserves its mapitude and
orientation under deformation, and is specified accordingly as force per unit underformed
lenath.)

Substituting eqns (14) in (20), integrating the latter by parts and referring to eqn (1S), we
obtain the equations of motion as a set of second-order nonlinear diferential equations in u, w
and ., which read in implicit form as follows:

[oM1I(1 +u' +Xw+ Ii' +Xlii»)' -oMIIXlxu - w'+ Xli - w1+oM'2X+P. =olli+ ,l~

[oMlI(w'- XU + w'- x')+oM'2j'-oMllx[1 +xw+ u'+ Xlii +Ii'l+ ,MIIX2+PH = low

[,Mil +2MIIX)' - oM'2 + m = ,Iii +2I~ (23)

with the following boundary conditions:

u = u* or oMII(1 +u' +xw + Ii' +Xlii) +,Mllx = N*

w=w* oroM"(w' - XU + w' - xil)+oM'2 =Q*

• =.* or ,Mil +2MII =M*
where

,.Mil =LS"(t2rdA

J =LP(f>" dA

(24)

(25)

,.Mil are the IDDIIaIized forces (for example, 0M" is the axial force, Mil is the beadiaa moment
and oM'2 is the shear force). .
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(26)

where b is the width of the beam.
The reference surface is best chosen so that

Cnii/d = 0

} for n =1,3,5...
n1 =0

(27)

Substituting eqn (19) in (25) and using eqns (14) and (27), we obtain the generalized forces as
function of the displacements:

oMlI =COli II e+C2
11I1Xt// +Co

lll21

IMII =C2
1111K

2MII =C2
11lle +C4

1II IXq,' +C2
11121

oMI2 =Co
l211e+C2

12I1X4>' +COl2121

where

e =u' +xw +~/2U2+ X2/2w2 +1/2u,2+ 1/2w,2+ xu'w - Xw'u

+u'a' +w'w' +~ua+x2ww +xu'w +xa'w - Xw'/ii - xw'u

K =q,'+ xu' +~w

'Y =q, +w' - xu

(which are generally called extensional, bending and shear strain respectively).

(28)

(29)

3. SOLUTION PROCEDURE

A modification of Newton's method (Ref. [9)), applicable to differential equations, is
employed for reducing the nonlinear field equations eqns (23) and the appropriate boundary
conditions eqns (24) to a sequence of linear systems. In this method, the iteration equations
are derived by assuming that the solution is achieved by a small correction to an approximate
solution (initially taken as the linear solution). These small corrections are obtained through
solution of the linearized differential equations.

On substitution of eqns (27H29) in (23) and (24) and application of the modified Newton
method, the linearized second-order differential equations can be written in matrix form as
follows:

Field equations

(30)

Boundary equations

where {Z}T ={u, w,4>} is the unknown vector. [R} is the mass matrix (order 3x 3), lFil and [B;]
are coefticient matrices (order 3x 3) dependent on the geometric and elastic parameters of the
beam and on the deformed confiauration. {g/} and {g.} are vectors (of order 3) containing the
external applied load and terms introduced by the procedure of Newton's method.

These differential equations are recast in the form of finite-difference equations. In view of
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the aspects of converaence and accuracy under inclusion of shear deformation, a special
finite-dilerence scheme was chosen, compriaina two iIitirIaCed·diIdDct aets, .. for wand the
other for II ad .. The tint IDcllast equations of eqns (23) lie written betweea mesh points and
the second at the , yieIcIiq a biBb...of lCCUnCy even with relatively sparse nets
(see Refs. [8,10)) lion at the bounc1Iries .:acted with the aid of fictitious points
on either exterior side of the curved beam.

After convertiq the dilerential equations to dilerence equations in the axial direction and
addin,g a viscous dampin,g matrix, the final equations can be written as:

[A){z} +[C){i} +[R){i} ={P} (31)

where {IV ={Ie. z, ... ZHI/f ZHp+I} is the entire unknown vector (Np is the number of mesh
points). A, Cand Rare the overall matrices of stilness, damping and mass, respectively (all are
of order 3(Np +2) x 3(Np +2) and are band matrices). .

The exact form of the dampin,g matrix is unknown for most structures, and there is little
experimental basis for selectina dampin,g constants. Accordin,gly, a form of viscous dampin,g
proportional to the mass and stilness matrices, which suffices for most structures, was chosen
(see Ref. [13]),

[C] =a[R] + II [A] (32)

a and II are constants, determined from two given damping ratios correspondin,g to two
unequal angular frequencies of vibration:

a + fJoJl =2bI,6 (33)

where tr1j are the frequencies and Ei the given dampina ratios.
The first and second time derivatives of I in eqn (31) are approximated by Houbolt's

third-orcler bactwInts dilerence expression (see Refs. (8,11,13]). The solution for eacb time
step (which later serves as initial solution for the next one) is obtained by an iterative
procedure, in which for each itntion the set of equations is solved by the paentization of
Potter's method (reported in Ref. [14]), the matrix Aand vector , of eqn (31) beina cbanpd
accordinIIY until the solution conveqes. A time history of the beam response is obtained by
UBina equal incnments, either until a prescn'bed maximum number of time steps bas been
reaebed, or until the solution fails to conveqe after a specified number of iterations. The time
interval is usually small, so only a few iterations are required. However, when the curved beam
becomes dynamic:aIly unstable, the solution may not conveqe even with a Iaqe number of
iterations.

4. NUMERICAL RESULTS

A general computer program (DLDCBM) was written for the procedure outlined above,
valid for any curved beam UDder arbitrary dynamic-loadiDa and bouDdary conditioRs, as welJ as
for any pometrical initial imperfection. Three examples (worked out on a biab-sPeed IBM
370/168 diaitaI computer) were used for iJlustratina the above methodoloaY, with the common
aim of COftIPIriIII dynamic and static buckIiDa under step loadina at two levels of shear
dnas: (a) a straiPt beam, (b) a shallow circular arch and (e) a deep circular arch. The static
solutions of these examples were obtained by the same propam and the results (for a biah level
of shear stilness. to wbkb they are also referred in literature) are in very good qreement with
Refs. [1,4] for the shallow arch and with Refs. [2, 3] for the deep arch.

(a) Stftlilltt bIGm (liIII-ftN imperfection)
The parameters IDd Ioad-frequency curves for this example are given in F... 2, u the axial

load incraIes the freqgeacy decreases to a minimum and sublequently iDc:reues apin. In Ref.
[15], the dynamic: bucklina laid was defined as die hiIhat load level for which a bounded
response exists, but since the straiPt beam is stable even beyond the buckline load, a new
definition is called for, DllDeIy, the load level for which the frequency is minimum. In the
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Fig. 2. Load-frequency curves for strailbt beam under axial step load.

present example the dynamic and static buckling load coincide, as the stJ'ailht beam is not
sensitive to imperfections.

As could be expected, the frequencies and buckling load for the lower level ofshear'
stilness are lower than for the biPer level (see rig. 2), and while the frequency increases with
the imperfection (the beam becomina stifter because ofarchinc), the buckJina load remains the
same. The dyoamic mapification factor, plotted apinst the load parameter in Fig. 3, is seen to
decrease in the nejpborhood of the buckIina load. A uniform filJite..dilerence net was chosen
with 31 points and the time interval was taken as 1/10 of the period of the first natural mode.

(b) Shallow circMlar arch
The parameters (drawn from Ref. [4]) and load-frequency curves are given in Fig. 4. Here

apin, as in the preceding example, the frequency decreases to a minimum and then increases.
In Fig. 5 the maximum response is plotted for the cases of no damping and critical damping,

1.1

___ 8./h e O.1

____ 8./h.03

1.4

Ll

PI&- 3. Dynamic mapificaIion factor for straigbt beam under axial step load.
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____ STATIC IOLUTION
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_.__ DYNAMIC SOLUTION Iwltll crltlcol UlllplllCll

Ul

Y.. 5. MuiInum static IIId dYQllDic apel~t for ....Iow cin:ulIr arcb lIIIder COIICIIIIfIIed step
load.

compared with the static solution. In the critical clampina case it is the same as in the static
solution until a limit point (the minimum point in Pi,. 4). When the saap-throuJIt occurs the
displacement jumps to the other side and stabilizes. Fiaures 6 and 7 show the time IIiatory of
the apex dilplacemeat at several load levels, plotted for the IUah and low level of shear
1tiIDess, fWIPICdveIy; since these refer to aD undamped system, they Me COIIII*I*
willi fII. 4. Boaholt'sl8llChod COIDins -in which ...... OIl ...... level
IDd for .... lIJove the limit poiat time is ., for ID..Ite""'.
Ac:eordiDtIY the IOIutioa is plotted in the above for IOIDe ..__ ia to
iIIaItIate ... poiIIIt. PipN I, which pmenta the COII'IIpOdaa.. history It criI.II:aI .
shows a shIrp jump of the respoase for a small..in load .... the limit poiat (q. fit. 1$.2
IDd 16 for 004.· 2.34 x lOS. Po· 5.0 and 6.0 for 004. - 2.34 x lCP ka). The jump paint is also a
characterization of the dynamic bucklina load.
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Fig. 7. Time history of apex displacement for shallow arch with GA, '" 234 kg.

The dynamic solution converged, with respect to the number of nodal points, by 81 points
for the hiaber stilness level and by 41 for the lower one. The time interval was taken as 1/100
of the period of the first natural mode.

(c) Deep circalar arch
The parameters and load-frequency curves are given in Fig. 9; unlike the preceding example,

the frequency decreases until there is no bouaded response. and the solution failed to CORveqe
at the termiDal point of these curves (the limit load level). F'lIWe 10 sbovis the maximum
respoDse of the apex displacement for the two stillness levels and Fig. 11-the tUne history at
some load levels. for the lower stilness level. .

As the aalaysis was confined to the symmetric mode. only one balf of the arch was run,
subject to the appropriate symmetry concJition. The solution for the semicircular arch con
veqed, with respect to the number of nod&l points, by 81 points. The time interval was again
taken as 1/100 of the period of the first natural mode. .
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5. CONCLUSIONS

A DOIl-linear theory, based on larp ddection and small rotation and admitting shear
delor""" aad rotary inertia. and a solution procedure. are presented for an arbitrary plane
curved ... IIIbjeeted to lII'bitnry dynamic ...... The non-linear ...... with the
~ and total rotation as UDbowns, are reduced to linear IIqUeIlc:eS (by a
....adoa of Newton's method), converted to dilaence equations. and soIwd by HouboIt's
medtod. TIle tIIeory (limited to linear eIIstic material) and the solution procedure are suitable
for a wide ,.. of problems. such as layered curved beams with pometric ialflrfectioDs. The
d)'IIIIDic criteria for bnetIina. and the inftuence of .... stilaeas. are cbetbd. by IlUIDeI'kaI
means.
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